Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 1, 2026
-
Wodarz, Dominik (Ed.)Patient-derived tumor organoids (PDTOs) are novel cellular models that maintain the genetic, phenotypic and structural features of patient tumor tissue and are useful for studying tumorigenesis and drug response. When integrated with advanced 3D imaging and analysis techniques, PDTOs can be used to establish physiologically relevant high-throughput and high-content drug screening platforms that support the development of patient-specific treatment strategies. However, in order to effectively leverage high-throughput PDTO observations for clinical predictions, it is critical to establish a quantitative understanding of the basic properties and variability of organoid growth dynamics. In this work, we introduced an innovative workflow for analyzing and understanding PDTO growth dynamics, by integrating a high-throughput imaging deep learning platform with mathematical modeling, incorporating flexible growth laws and variable dormancy times. We applied the workflow to colon cancer organoids and demonstrated that organoid growth is well-described by the Gompertz model of growth. Our analysis showed significant intrapatient heterogeneity in PDTO growth dynamics, with the initial exponential growth rate of an organoid following a lognormal distribution within each dataset. The level of intrapatient heterogeneity varied between patients, as did organoid growth rates and dormancy times of single seeded cells. Our work contributes to an emerging understanding of the basic growth characteristics of PDTOs, and it highlights the heterogeneity in organoid growth both within and between patients. These results pave the way for further modeling efforts aimed at predicting treatment response dynamics and drug resistance timing.more » « less
-
Basanta, David (Ed.)Tumor heterogeneity is a complex and widely recognized trait that poses significant challenges in developing effective cancer therapies. In particular, many tumors harbor a variety of subpopulations with distinct therapeutic response characteristics. Characterizing this heterogeneity by determining the subpopulation structure within a tumor enables more precise and successful treatment strategies. In our prior work, we developed PhenoPop, a computational framework for unravelling the drug-response subpopulation structure within a tumor from bulk high-throughput drug screening data. However, the deterministic nature of the underlying models driving PhenoPop restricts the model fit and the information it can extract from the data. As an advancement, we propose a stochastic model based on the linear birth-death process to address this limitation. Our model can formulate a dynamic variance along the horizon of the experiment so that the model uses more information from the data to provide a more robust estimation. In addition, the newly proposed model can be readily adapted to situations where the experimental data exhibits a positive time correlation. We test our model on simulated data (in silico) and experimental data (in vitro), which supports our argument about its advantages.more » « less
An official website of the United States government
